Environmental controls on the increasing GPP of terrestrial vegetation across northern Eurasia
نویسندگان
چکیده
Terrestrial ecosystems of northern Eurasia are demonstrating an increasing gross primary productivity (GPP), yet few studies have provided definitive attribution for the changes. While prior studies point to increasing temperatures as the principle environmental control, influences from moisture and other factors are less clear. We assess how changes in temperature, precipitation, cloudiness, and forest fires individually contribute to changes in GPP derived from satellite data across northern Eurasia using a light-useefficiency-based model, for the period 1982–2010. We find that annual satellite-derived GPP is most sensitive to the temperature, precipitation and cloudiness of summer, which is the peak of the growing season and also the period of the year when the GPP trend is maximum. Considering the regional median, the summer temperature explains as much as 37.7 % of the variation in annual GPP, while precipitation and cloudiness explain 20.7 and 19.3 %. Warming over the period analysed, even without a sustained increase in precipitation, led to a significant positive impact on GPP for 61.7 % of the region. However, a significant negative impact on GPP was also found, for 2.4 % of the region, primarily the dryer grasslands in the south-west of the study area. For this region, precipitation positively correlates with GPP, as does cloudiness. This shows that the south-western part of northern Eurasia is relatively more vulnerable to drought than other areas. While our results further advance the notion that air temperature is the dominant environmental control for recent GPP increases across northern Eurasia, the role of precipitation and cloudiness can not be ignored.
منابع مشابه
Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia
A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and...
متن کاملEnvironmental Humidity Regulates Effects of Experimental Warming on Vegetation Index and Biomass Production in an Alpine Meadow of the Northern Tibet
Uncertainty about responses of vegetation index, aboveground biomass (AGB) and gross primary production (GPP) limits our ability to predict how climatic warming will influence plant growth in alpine regions. A field warming experiment was conducted in an alpine meadow at a low (4313 m), mid- (4513 m) and high elevation (4693 m) in the Northern Tibet since May 2010. Growing season vapor pressure...
متن کاملA new approach for estimating northern peatland gross primary productivity using a satellite‐sensor‐derived chlorophyll index
[1] Carbon flux models that are largely driven by remotely sensed data can be used to estimate gross primary productivity (GPP) over large areas, but despite the importance of peatland ecosystems in the global carbon cycle, relatively little attention has been given to determining their success in these ecosystems. This paper is the first to explore the potential of chlorophyll‐based vegetation...
متن کاملEvaluation of rangeland gross primary productivity sensitivity potential to drought using ecosystem modelling
Gross primary productivity is one of the most important factors in the carbon cycle of terrestrial ecosystems. With global warming increase, the frequent drought events and the specific response of regional vegetation to these changes, it is essential to identify and quantify the relationships between climatic and GPP data in arid region. In this study, the responses of gross primary productivi...
متن کاملA new model of the global biogeochemical cycle of carbonyl sulfide – Part 2: Use of carbonyl sulfide to constrain gross primary productivity in current vegetation models
Clear analogies between carbonyl sulfide (OCS) and carbon dioxide (CO2) diffusion pathways through leaves have been revealed by experimental studies, with plant uptake playing an important role for the atmospheric budget of both species. Here we use atmospheric OCS to evaluate the gross primary production (GPP) of three dynamic global vegetation models (Lund–Potsdam–Jena, LPJ; National Center f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016